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To characterize the behavior of the thermodynamic properties of systems near a
critical point, systems are grouped into universality classes. Systems within a
universality class have the same universal critical exponents and scaling func-
tions. Specifically, fluids are expected to belong to the universality class of
three-dimensional Ising-like systems for which the universal quantities have been
calculated with considerable accuracy. A scaled fundamental equation is pre-
sented which incorporates these theoretical predictions. Results obtained for
various technologically important fluids, namely ordinary steam, heavy steam,
ethylene, and isobutane, are discussed.
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1. INTRODUCTION

The accurate characterization of the near-critical region of fluids has
become of increasing importance for the following reasons. First of all, the
critical parameters are used as reduction parameters in many engineering
equations. Their values are more often inferred from analysis of near-
critical behavior than from direct measurements. Second, working fluids,
such as steam in power generation and isobutane in binary geothermal
power cycles, operate in supercritical power cycles. Third, in the climatic
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conditions of the U.S., the custody transfer of important chemicals such as
ethylene and carbon dioxide may occur in near-critical conditions. Lastly,
supercritical fluids such as carbon dioxide and ethylene are used as
extractants.

An accurate representation of the thermodynamic. behavior of near-
critical fluids is complicated by the fact that the thermodynamic surface of
fluids becomes nonanalytic at the critical point. The singular behavior is
due to the fact that the critical point is a point of marginal thermodynamic
stability, which leads to the presence of large-scale density fluctuations in
the vicinity of the critical point.

During the past two decades considerable progress has been made in
our scientific understanding of the nature of critical-point phase transitions.
The mathematical character of the anomalous critical behavior is expected
to be universal, i.e., the same for large classes of systems. Specifically, the
hypothesis of critical-point universality asserts that fluids near the gas—
liquid critical point belong to the universality class of Ising-like systems,
i.e., three-dimensional systems with a one-dimensional order parameter and
with short-range forces. Many detailed theoretical predictions have become
available for this universality class, in particular from the renormalization-
group theory of critical phenomena applied to spin systems. Guided by the
analogy between Ising model and lattice gas, it is possible to apply the
theoretical predictions to fluids as well. Using this approach, we have
formulated a nonanalytic fundamental equation for fluids in the critical
region that incorporates the theoretically predicted singular behavior.

In this paper we discuss the theoretical foundations of this fundamen-
tal equation and summarize our results obtained to date for technologically
important fluids.

2. THEORETICAL PREDICTIONS

The modern theoretical predictions for the properties of systems near a
critical point are based on the renormalization-group theory of critical
phenomena. This theory was introduced by Wilson [1], for which he
received the Nobel Prize in 1982. As shown by Wegner, this theory implies
that the thermodynamic potential of a spin system near the Curie point can
be represented by an expansion of the form [2, 3]

F = Fy+ [u|PCHIf(x) + |, |POT D5 (x) + - - - (1)
with

x = u,/|u)? 2)
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Here 8 and § are the exponents of the critical power laws that characterize
the asymptotic behavior of the order parameter along the coexistence
boundary and of the ordering field along the critical isotherm; the expo-
nent A accounts for the nonanalytic behavior of the first correction to the
asymptotic power law behavior. The variables 4, and u, are so-calied
relevant scaling fields, which vanish at the critical point, while #, is the first
irrelevant scaling field that remains finite at the critical point. For spin
systems, the thermodynamic potential F is identified with the Gibbs free
energy divided by k,7, where kp is Boltzmann’s constant and 7T the
temperature. The scaling fields u,, u,, and u, and the background function
F, are assumed to be analytic functions of the physical fields, temperature
T, and magnetic field H, or, equivalently, 1/k,T and H/kyzT. The critical
exponents ( 8,8,4) and the scaling functions ( f,, f,) should be the same for
all systems within a universality class; system-dependent quantities only
appear in the expansion of the scaling fields and of the background
function F,,. Accurate theoretical predictions for the critical exponents for
the universality class of three-dimensional Ising-like systems are currently
available [4]. These theoretical values are in good agreement with available
experimental evidence [5-8]. For the purpose of our work we have adopted
the universal exponent values

B=0325, 6=482, A=05 3)

There exists also a considerable amount of theoretical information for the
universal scaling function f;, but less for the universal correction-to-scaling
function f;.

For symmetric spin systems, u, reduces to H/kyT itself, while u,, u,,
and F, are functions of the temperature only [2]. In that case the thermody-
namic potential F is invariant under the inversion of the magnetic field. In
the more general case of nonsymmetric spin systems, to be considered here,
the scaling fields and F,, become functions of both 1/k,T and H/k,T
[2, 9]. The scaling functions f, and f;, being universal, remain even
functions of the variable x; odd scaling functions do appear in the
expansion (1), but they are associated with higher order terms [9, 10].

3. SCALED THERMODYNAMIC POTENTIAL FOR FLUIDS

A procedure for applying the Wegner expansion (1) to fluids near the
gas-liquid critical point was proposed by Ley-Koo and Green [11]. They
assume an analogy between the grand-canonical partition function of a
fluid and the canonical partition function of a spin system as is known to
exist for the lattice gas [12, 13]. Accordingly, they identify the Gibbs
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function with the pressure P and the magnetic field with the chemical
potential p. Specifically, we consider the potential P/ T as a function of
1/T and p/T and write the Wegner expansion (1) in the form

P = Py(T, i) + [u|POVfy(x) + uy|u,|PO+D+4x) (4)

truncating the expansion after the first correction-to-scaling term. Here we
introduce the reduced quantities

T,

5_P L fo _ e g P Te s_ P s U
P=73- T=-7 fB=375 > 9=, U=3yp
()

where y is the chemical potential, p the density, V the volume, and U the
internal energy, while 7., P,, and p, refer to the values of T, P, and p at the
critical point. In addition, we define the variables

AT=T+1, Afi=i—joT) (6)

chosen such that AT =0 and Afi =0 at the critical point. The functions
ol T) and PO(T fi) are analytic functions, which will be expanded around
their values at the critical point in powers of AT, and of AT and Af,
respectively. In the range of validity of the fundamental equation (4), we
find that the expansions can be truncated as

3
o(T)y=fi, + S @ (AT (7

i=1
BT, iy=1+ ZIP,.(AT)’+A,I+P“(AT)(A,I) (8)

The scaling fields «,, u,, and u, are analytic functions of AT and Af.
Except for a system-dependent proportionality factor, we obtain in lowest
order [11, 14]

= AL = [T — fio( T) )
=AT +cAf (10)
while up can be approximated by a constant. At coexistence u, =0 and

fiol T) is to be interpreted as the saturation chemical potential curve for
AT <0 or its analytic extension for AT > 0. The system-dependent con-
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stant ¢ in (10) accounts for the mixing of the AT and Af variables in the
effective scaling field w, for nonsymmetric systems.
The potential P satisfies the differential relation

db = Udf + 5dﬁ=((7 ”Z”O)d(AT)+pd(Ap) (11)

This relation enables one to obtain expressions for the various thermody-
namic properties from the potential P [14, 15].

In order to specify the fundamental equation, we need explicit expres-
sions for the universal scaling functions fy(x) and f,(x) in (4). However, to
avoid nonanalyticities in the one-phase region away from the critical point,
it appears necessary to introduce a coordinate transformation from the
scaling fields u, and u, to a new set of (parametric) variables r and #. These
variables are such that r measures, in some sense; distances from the critical
point, while # measures locations along contours of constant r. Since the
nonanalytic behavior of P manifests itself at the critical point (r = 0), it is
then assumed that AP = P — 150( T, i) is analytic in 8 and only nonanalytic
in r. The transformation commonly used is [13]

= rPah(1 - 6% (12)
u, = r(l — b6?) (13)

where a and b are constants. At coexistence u, = 0 and the values § = *+ 1
correspond to the two branches of the coexistence curve. It follows that the
potential P must depend on » and € in such a way that

AAP)

du,

= rﬁ[mo(a) + rAml(H)] (14)

Since AP is even in u,, d(AP)/du, must be odd in u, and hence odd in 6.
The simplest approximation, which turns out to be adequate, is to assume
that m(#) and m(f) are proportional to 8,

mo(8) = kof (15)
my(8) = k8 (16)

The approximation (15) was originally introduced by Schofield er al. [16]
and defines the so-called linear-model scaled equation of state for the
asymptotic critical behavior [13]. The generalization (16) of the linear-
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Table 1. Coefficients for p,(8) = po; + pp.8% + py,0*

B(6—3)— BB —-1)2-B5—-PB)
208+ 1D(BS+B—- 12—~ 5~ B)
B(d~3)— b*(2B5 — 1)(2— B8~ B)
2B+ B-DQ2-B5-B)
., 268-3
Po= T 22— Bs - B)
+ B(8—=3)—3A~bXB8—B—-A)(2—~B5—B—4)
2(BS+ B+ ANBI+ A~ 1 +A)2— o B—4)
 B(3-3)-3M—B2(2B5— 1)2 - B8 — f— &)
WP+ -1+ M2 — po—B-4)
286 - 3
Pt s g T BT )

Poo =

Pro=—

P =

Pu=

model approximation to the first correction-to-scaling term was introduced
by Balfour ez al. [17]. With the equations for my(f#) and m (), the scaled
fundamental equation is completely specified and the singular part AP of
the potential becomes

AP = arfC+ ko py(8) + rk py(0)] (17)

with p,(8) = py, + ps8° + pa,8* for i =0 and i = 1. The coefficients p; are
functions of the critical exponents 8, 8, and A and the constant b* as given
in Table I.

The system-dependent constants that determine the scales of the fields
u,, u,, and u, are represented by the coefficients a, &y, and k,. However,
universality of the scaling functions implies that the constant »? be univer-
sal and we adopt the value

b2 = 13757 (18)

This value was originally determined from the experimental PV'T data for
steam [15] and it appears to reproduce the scaling function fy(x) within the
accuracy to which this universal function is currently known theoretically
[6, 13]. The corresponding universal values for the coefficients p; are
included in Table II in the Appendix, where the equations that specify the
scaled fundamental equation are summarized.

4. APPLICATIONS

The scaled fundamental equation contains the following constants.
First, the critical exponents §, 8, and A and the scaling-function constant
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b2, which are universal and whose values are given by theory. In addition,
the equation contains the following system-dependent constants: the criti-
cal-point parameters T, P., and p,, the parameters a, k, k;, and ¢, which
determine the relationshlp between the scaling fields and the physical
variables, the parameters 151, 152, };3, and 15”, which determine the analytic
background to the pressure, and the parameters fi,, {i,, fi,, and {i;, which
determine the analytic background to the caloric properties, yielding a total
of 15 parameters. Two of these parameters, namely fi. and ,, are related to
the zero-point values of energy and entropy; in practice they are chosen so
that the energy and entropy from the scaled equation become equal to
those from available global thermodynamic equations away from the
critical point.

We have determined the parameters for a number of fluids, with
special emphasis on fluids that are important in engineering applications.
The results thus far obtained are presented in Table III in the Appendix
and include normal steam [15], heavy steam [18], ethylene [19], and
isobutane [20]. Work on carbon dioxide is currently in progress. It turns out
that the equation yields a correct physical representation of the experimen-
tal data in a density range of approximately 30% above and below the
critical density p, at temperatures up to about 6% above T, and down to
temperatures below 7, where the vapor and liquid densities begin to differ
by more than 30% from p,. Detailed comparisons between the equation and
the original experimental data for the various fluids are presented elsewhere
[15, 18-20]. Here we restrict ourselves to some comments about the
differences between the thermodynamic properties calculated from the
universal scaled fundamental equation and those calculated from classical
engineering equations that are analytic at the critical point.

As a representative example we consider heavy steam (D,0). An
analytic fundamental equation for D,O was recently formulated by Hill ef
al. [21, 22]; this equation has subsequently been adopted by the Interna-
tional Association for the Properties of Steam as the recommended formu-
lation for the thermodynamic properties of fluid D,0. The differences
between the scaled fundamental equation and classical equations become
most pronounced when considering properties like the compressibility or
the specific heat which are related to derivatives of the thermodynamic
surface. For instance, the scaled fundamental equation implies that the
compressibility K, and the specific heat at constant pressure G, will
asymptotically dlverge as [AT|7AC~D = |AT|~ % while analytic equatlons
can only accommodate an asymptotic divergence inversely proportional to
AT {13]. In Fig. 1 we show a comparison between the experimental C, data
of Rivkin and Egorov [23] for D,O in the critical region and our scaled
fundamental equation. In Fig. 2 the same data are compared with the
analytic equation of Hill ef al. The scaled fundamental equation accommo-
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Fig. 1. The specific heat at constant pressure of D,O in the critical region at various pressures
as a function of density. The data points are those of Rivkin and Egorov and the curves
represent the values calculated from the universal scaled equation. (From [18).)
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Fig. 2. The specific heat at constant pressure of D,O in the critical region at various pressures
as a function of density. The data points are those of Rivkin and Egorov and the curves
represent the values calculated from the analytic equation of Hill er al. (From [18].)
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Fig. 3. The specific heat at constant volume of D,0 as a function of density at various values
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dates the actual increase of the C, maxima as a function of temperature,
but the analytic equation does not [18]. The differences between the scaled
equation and the analytic equation are even more qualitative when one
considers the specific heat at constant volume C,. In Figs. 3 and 4 we have
plotted C, as a function of density for various values of AT =T~ T, as
calculated from the scaled equation and the analytic equation, respectively.
The scaled equation implies that C, will diverge as [AT|BG+D-2 =
|[AT|~%%; in an analytic equation the specific heat must remain finite at the
critical point [13]. The fact that the specific heat at constant volume
diverges at the critical point has been well established experimentally [5,
24]. The analytic equation of Hill er a/. does not account for such an
increase of C, in the critical region. In the case of D,0 we have only a few
experimental C, data of unknown accuracy reported by Amirkhanov et al.
[25]; these data do indicate a sharp increase near the critical point consis-
tent with the predicted divergence as shown in Fig. 5.

Similar differences are obtained if our fundamental scaled equation is
compared with the analytic equation of Keenan er al. [26] for ordinary
steam, with the analytic equation of Jacobsen et al. [27] for ethylene, or
with the analytic equation of Waxman and Gallagher [28] for isobutane. It
should be noted that Waxman and Gallagher were well aware of the
limitations of their analytic equation in the critical region and exclude from
their surface the region around the critical point where large discrepancies
appear [20, 28].

It is possible to improve the agreement between analytic equations and

10 T T T T
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———Hill et al
8 : —1

p=344.8 kg-m?

Cy, kd kg K

0 I ! ! 1
640 650 660 670 680 690

Temperature, K

Fig. 5. The specific heat at constant volume of D,0 in the one-phase region as a function of
temperature at a density near the critical density. The data points are those of Amirkhanov et
al. and the curves represent the values calculated from the universal scaled equation (—) and
from the analytic equation of Hill et al. (- - -).
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a finite set of experimental data by adding an adequate number of
corrections terms. This procedure was adopted by Haar er al. [29] in
formulating a new fundamental equation for fluid H,O adopted by the
International Association for the Properties of Steam [30]. However, be-
cause of qualitatively unphysical features caused by these correction terms,
a small region around the critical point has to be excluded from the
equation [30, 31}.

5. DISCUSSION

The renormalization-group theory of critical phenomena, originally
introduced by Wilson and further developed by many researchers, does
provide us with a new powerful method for a correct representation of the
thermophysical properties of fluids in the critical region. Research to
generalize the scaled fundamental equation so as to make it applicable in a
larger range of temperatures and densities around the critical point is
currently in progress [10, 32].

APPENDIX. SCALED FUNDAMENTAL EQUATION

Reduced thermodynamic quantities:

s T 5 L o pel
P=7%: T=-7 F=77F

Fundamental equations:

3
AT=T+1, Aj=f—f— Y [(AT)/
j=1
~ ~ ~ ~ 3 ~ ~
P=AP+ 1+ Af+ P AGAT + ) P(AT)/
Jj=1

Table II. Universal Critical-Region Constants

B 0.325

8 4.82

A 0.5

b? 1.3757
Poo 0.586 535
P - 1.026 243
Por 0.103 25

Py —0.169 86
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Parametric representation.
Afi=rPag(1 - 6%
AT =r(1 - b8% — crPaf(1 - 8%
AP = arﬁ(s”)[kopg(ﬂ) + % pi(8) ]

with p,(8) = po; + pp:8* + ps8* (i =0,1). The values of the constants in
these equations are presented in Tables II and III. Explicit expressions for
the various thermodynamic properties in terms of the constants of the
scaled fundamental equation are given in Refs. 14 and 15.
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