
International Journal of Thermophysics, Vol. 5, No. 2, 1984 

A Universal Representation of the Thermodynamic 
Properties of Fluids in the Critical Region 1 

J. V. Sengers2'3and J. M. H. Leveit Sengers 3 

Received February 23, 1984 

To characterize the behavior of the thermodynamic properties of systems near a 
critical point, systems are grouped into universality classes. Systems within a 
universality class have the same universal critical exponents and scaling func- 
tions. Specifically, fluids are expected to belong to the universality class of 
three-dimensional Ising-like systems for which the universal quantities have been 
calculated with considerable accuracy. A scaled fundamental equation is pre- 
sented which incorporates these theoretical predictions. Results obtained for 
various technologically important fluids, namely ordinary steam, heavy steam, 
ethylene, and isobutane, are discussed. 
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1. INTRODUCTION 

The accurate characterization of the near-critical region of fluids has 
become of increasing importance for the following reasons. First of all, the 
critical parameters are used as reduction parameters in many engineering 
equations. Their values are more often inferred from analysis of near- 
critical behavior than from direct measurements. Second, working fluids, 
such as steam in power generation and isobutane in binary geothermal 
power cycles, operate in supercritical power cycles. Third, in the climatic 
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conditions of the U.S., the custody transfer of important chemicals such as 
ethylene and carbon dioxide may occur in near-critical conditions. Lastly, 
supercritical fluids such as carbon dioxide and ethylene are used as 
extractants. 

An accurate representation of the thermodynamic behavior of near- 
critical fluids is complicated by the fact that the thermodynamic surface of 
fluids becomes nonanalytic at the critical point. The singular behavior is 
due to the fact that the critical point is a point of marginal thermodynamic 
stability, which leads to the presence of large-scale density fluctuations in 
the vicinity of the critical point. 

During the past two decades considerable progress has been made in 
our scientific understanding of the nature of critical-point phase transitions. 
The mathematical character of the anomalous critical behavior is expected 
to be universal, i.e., the same for large classes of systems. Specifically, the 
hypothesis of critical-point universality asserts that fluids near the gas- 
liquid critical point belong to the universality class of Ising-like systems, 
i.e., three-dimensional systems with a one-dimensional order parameter and 
with short-range forces. Many detailed theoretical predictions have become 
available for this universality class, in particular from the renormalization- 
group theory of critical phenomena applied to spin systems. Guided by the 
analogy between Ising model and lattice gas, it is possible to apply the 
theoretical predictions to fluids as well. Using this approach, we have 
formulated a nonanalytic fundamental equation for fluids in the critical 
region that incorporates the theoretically predicted singular behavior. 

In this paper we discuss the theoretical foundations of this fundamen- 
tal equation and summarize our results obtained to date for technologically 
important fluids. 

2. THEORETICAL PREDICTIONS 

The modern theoretical predictions for the properties of systems near a 
critical point are based on the renormalization-group theory of critical 
phenomena. This theory was introduced by Wilson [1], for which he 
received the Nobel Prize in 1982. As shown by Wegner, this theory implies 
that the thermodynamic potential of a spin system near the Curie point can 
be represented by an expansion of the form [2, 3] 

F =  F o + Illt[~(8+l)fo(X) "1- UlIUtI~<~+I)+%(X) + " ' "  (1) 

with 

x = ( 2 )  



Thermodynamic Properties of Fluids in the Critical Region 197 

Here/3 and 6 are the exponents of the critical power laws that characterize 
the asymptotic behavior of the order parameter along the coexistence 
boundary and of the ordering field along the critical isotherm; the expo- 
nent A accounts for the nonanalytic behavior of the first correction to the 
asymptotic power law behavior. The variables u t and u h are so-called 
relevant scaling fields, which vanish at the critical point, while u~ is the first 
irrelevant scaling field that remains finite at the critical point. For spin 
systems, the thermodynamic potential F is identified with the Gibbs free 
energy divided by kBT, where k B is Boltzmann's constant and T the 
temperature. The scaling fields ut, Uh, and u I and the background function 
F 0 are assumed to be analytic functions of the physical fields, temperature 
T, and magnetic field H, or, equivalently, 1 / k  B T and H~ k~ T. The critical 
exponents (/3, 6, A) and the sealing functions (f0, fl)  should be the same for 
all systems within a universality class; system-dependent quantities only 
appear in the expansion of the scaling fields and of the background 
function F 0. Accurate theoretical predictions for the critical exponents for 
the universality class of three-dimensional Ising-like systems are currently 
available [4]. These theoretical values are in good agreement with available 
experimental evidence [5-8]. For the purpose of our work we have adopted 
the universal exponent values 

/3 = 0.325, 8 = 4.82, A = 0.5 (3) 

There exists also a considerable amount of theoretical information for the 
universal scaling function f0, but less for the universal correction-to-scaling 
function fl .  

For symmetric spin systems, u h reduces to H/kBT  itself, while ut, ul, 
and F 0 are functions of the temperature only [2]. In that case the thermody- 
namic potential F is invariant under the inversion of the magnetic field. In 
the more general case of nonsymmetric spin systems, to be considered here, 
the scaling fields and F 0 become functions of both 1/kBT and H/kBT  
[2, 9]. The scaling functions f0 and f l ,  being universal, remain even 
functions of the variable x; odd scaling functions do appear in the 
expansion (1), but they are associated with higher order terms [9, 10]. 

3. SCALED THERMODYNAMIC POTENTIAL FOR FLUIDS 

A procedure for applying the Wegner expansion (1) to fluids near the 
gas-liquid critical point was proposed by Ley-Koo and Green [11]. They 
assume an analogy between the grand-canonical partition function of a 
fluid and the canonical partition function of a spin system as is known to 
exist for the lattice gas [12, 13]. Accordingly, they identify the Gibbs 
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function with the pressure P and the magnetic field with the chemical 
potential /~. Specifically, we consider the potential P ~  T as a function of 
1 / T  a n d / ~ / T  and write the Wegner expansion (1) in the form 

truncating the expansion after the first correction-to-scaling term. Here we 
introduce the reduced quantities 

g _ e L  7~= L ~pcTc P 0 = __~_U 
T P c'  T '  ~t- T P~-~ ' P - P c '  Pc v 

(5) 

where # is the chemical potential, p the density, V the volume, and U the 
internal energy, while T~, Pc, and Pc refer to the values of T, P, and p at the 
critical point. In addition, we define the variables 

A 7 ~ = 7 ~ + I, A/7 = /% --/7o( 7 ~) (6) 

chosen such that A7 ~ = 0 and A/7 = 0 at the critical point. The functions 
/70(7 ~) and/;0(7 ~,/7) are analytic functions, which will be expanded around 
their values at the critical point in powers of A7 ~, and of A7 ~ and /x/~, 
respectively. In the range of validity of the fundamental equation (4), we 
find that the expansions can be truncated as 

3 

/%0(7 ~) : #~ + ~]  f i ~ (A f ) '  (7) 
i = I  

3 

ff0(T, /7)= 1 + ~ / ~ ( A T ) '  + A/~ + ff, l(mT~)(A/~) (8) 
i = 1  

The scaling fields ut, Uh, and u 1 are analytic functions of A7 ~ and A/~. 
Except for a system-dependent proportionality factor, we obtain in lowest 
order [11, 14] 

u h = A/~ = /~ -/~0( 7~ ) (9) 

u t -- AT~ + c Ab7 (10) 

while u I can be approximated by a constant. At coexistence u h = 0 and 
/~0(fl ~) is to be interpreted as the saturation chemical potential curve for 
AT < 0 or its analytic extension for A 7 ~ > 0. The system-dependent con- 
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stant c in (10) accounts for the mixing of the A7 ~ and A/7 variables in the 
effective scaling field u t for nonsymmetric systems. 

The potential fi satisfies the differential relation 

/ .g.~. \ 

\ d T ]  
(11) 

This relation enables one to obtain expressions for the various thermody- 
namic properties from the potential/7 [14, 15]. 

In order to specify the fundamental equation, we need explicit expres- 
sions for the universal scaling functions f o ( x )  and f l ( x )  in (4). However, to 
avoid nonanalyticities in the one-phase region away from the critical point, 
it appears necessary to introduce a coordinate transformation from the 
scaling fields u h and u t to a new set of (parametric) variables r and 0. These 
variables are such that r measures, in some sense, distances from the critical 
point, while 0 measures locations along contours of constant r. Since the 
nonanalytic behavior of /7  manifests itself at the critical point (r = 0), it is 
then assumed that Aft = fi - / ;0(7  ~,/7) is analytic in O and only nonanalytic 
in r. The transformation commonly used is [13] 

u h = rB~aO(1 - 0 2) (12) 

u, = r(1 - b20 2) (13)  

where a and b are constants. At coexistence u h = 0 and the values 0 = + 1 
correspond to the two branches of the coexistence curve. It follows that the 
potential P must depend on r and 0 in such a way that 

 (zx/7) 
au h = ra[  mo( O ) + ram1(0)] (14) 

Since A/7 is even in uh, O ( A f i ) / O u  h must be odd in u h and hence odd in 0. 
The simplest approximation, which turns out to be adequate, is to assume 
that mo(O ) and ml(O ) are proportional to O, 

mo(O ) = koO (15) 

ml(O ) = klO (16) 

The approximation (15) was originally introduced by Schofield et al. [16] 
and defines the so-called linear-model scaled equation of state for the 
asymptotic critical behavior [13]. The generalization (16) of the linear- 
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Table 1. Coefficients for pi(O ) = Poi + P2i 02 + P4i 04 

P o o  = + 

P 2 0  = - -  

P 4 0  = + 

P 0 1  = + 

/3(3 - 3) - b2fl(3 - 1)(2 -/33 - / 3 )  

2b4fl(3 + 1)(/33 +/3 - 1)(2 -/33 - / 3 )  
fl(3 - 3) - b2(2f13 - 1)(2 -/33 - / 3 )  

2b2(f13 + /3 - 1) (2 - /73 - /3 )  
2/33 - 3 

2(2 - ,83 - / 3  j 

/3(3 - 3) - 3A - b2(/38 - /3  - A)(2 - ,83 - / 3  - A) 

2b4(/33 + fl + A)( f13 + fl -- 1 + A)(2 --/33 - /3 - A) 
fl(3 - 3) - 3A - b 2 ( 2 / 3  3 - 1)(2 - f13 - fl - A) 

P21 = - -  2b2(/33 +/3 - 1 + A)(2 - f13 - / 3  - A) 
2133 - 3 

P 4 1  = + 2(2 - f16 - B + A) 

mode l  a p p r o x i m a t i o n  to the first cor rec t ion- to-sca l ing  term was in t roduced  
by  Balfour  et  al.  [17]. Wi th  the equat ions  for mo(O ) and  m l ( O ) ,  the scaled 
f u n d a m e n t a l  equa t ion  is comple te ly  specif ied and  the s ingular  pa r t  A/ ;  of 

the poten t ia l  becomes  

A f t  = arB(8+l )[  koPo(O ) + r a k , p l ( O )  ] (17) 

with p i (O)  = Poi + P2i 02 + P4i 04 for i = 0 and  i -- 1. The  coefficients Pji are  
funct ions  of the cri t ical  exponents  t ,  6, and  A and  the cons tan t  b 2 as given 
in Tab le  I. 

The  sys t em-dependen t  cons tants  that  de te rmine  the scales of the fields 

Uh, Ut, and  U 1 are represen ted  b y  the coefficients  a,  k 0, a n d  k 1 . However ,  
universal i ty  of the scal ing funct ions  implies  that  the cons tan t  b 2 be univer-  

sal and  we a d o p t  the value  

b 2 =  1.3757 (18) 

This  value  was original ly de t e rmined  f rom the exper imenta l  P V T  da t a  for 
s team [15] and  it appears  to r ep roduce  the scal ing func t ion  f o ( x )  within the 
accuracy  to which this universal  funct ion  is cur rent ly  known  theore t ica l ly  
[6, 13]. The  co r respond ing  universal  values for the coefficients pj~ are 
inc luded  in Tab le  II  in the Append ix ,  where the equat ions  that  specify the 
scaled fundamen ta l  equa t ion  are summar ized .  

4. A P P L I C A T I O N S  

The scaled f u n d a m e n t a l  equa t ion  conta ins  the fol lowing constants .  
Firs t ,  the cri t ical  exponents  t ,  6, a n d  A a n d  the scal ing-funct ion cons tan t  
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b 2, which are universal and whose values are given by theory. In addition, 
the equation contains the following system-dependent constants: the criti- 
cal-point parameters To, Pc, and Pc, the parameters a, k 0, k 1, and c, which 
determine the relationship between the scaling fields and the physical 
variables, the parameters P1, t62,/63, and/611, which determine the analytic 
background to the pressure, and the parameters/zc, /~1,/~2, and/~3, which 
determine the analytic background to the caloric properties, yielding a total 
of 15 parameters. Two of these parameters, namely gc and/71, are related to 
the zero-point values of energy and entropy; in practice they are chosen so 
that the energy and entropy from the scaled equation become equal to 
those from available global thermodynamic equations away from the 
critical point. 

We have determined the parameters for a number of fluids, with 
special emphasis on fluids that are important in engineering applications. 
The results thus far obtained are presented in Table III in the Appendix 
and include normal steam [15], heavy steam [18], ethylene [19], and 
isobutane [20]. Work on carbon dioxide is currently in progress. It turns out 
that the equation yields a correct physical representation of the experimen- 
tal data in a density range of approximately 30% above and below the 
critical density Pc at temperatures up to about 6% above T c and down to 
temperatures below T c where the vapor and liquid densities begin to differ 
by more than 30% from pc o Detailed comparisons between the equation and 
the original experimental data for the various fluids are presented elsewhere 
[15, 18-20]. Here we restrict ourselves to some comments about the 
differences between the thermodynamic properties calculated from the 
universal scaled fundamental equation and those calculated from classical 
engineering equations that are analytic at the critical point. 

As a representative example we consider heavy steam (D20). An 
analytic fundamental equation for D20 was recently formulated by Hill et 

al. [21, 22]; this equation has subsequently been adopted by the Interna- 
tional Association for the Properties of Steam as the recommended formu- 
lation for the thermodynamic properties of fluid D20. The differences 
between the scaled fundamental equation and classical equations become 
most pronounced when considering properties like the compressibility or 
the specific heat which are related to derivatives of the thermodynamic 
surface. For instance, the scaled fundamental equation implies that the 
compressibility K r and the specific heat at constant pressure Cp will 
asymptotically diverge as ]AT~[-~(~-1) = IAT~]- 1.24 while analytic equations 
can only accommodate an asymptotic divergence inversely proportional to 
A7 ~ [13]. In Fig. 1 we show a comparison between the experimerital Cp data 
of Rivkin and Egorov [23] for D20 in the critical region and our scaled 
fundamental equation. In Fig. 2 the same data  are compared with the 
analytic equation of Hill et al. The scaled fundamental equation a c c o m m o -  
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Fig. 1. The specific heat at constant pressure of D20 in the critical region at various pressures 
as a function of density. The data points are those of Rivkin and Egorov and the curves 
represent the values calculated from the universal scaled equation. (From [18].) 
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Fig. 2. The specific heat at constant pressure of D20 in the critical region at various pressures 
as a function of density. The data points are those of Rivkin and Egorov and the curves 
represent the values calculated from the analytic equation of Hill et al. (From [18].) 
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Fig. 3. The specific heat  at constant  volume of D20  as a function of density at various values  
A T = T -  T c as calculated from the universal scaled equa t i on .  
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of A T  = T - T c as calculated from the analytic equation of Hill e t  al .  
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dates the actual increase of the C e maxima as a function of temperature, 
but the analytic equation does not [18]. The differences between the scaled 
equation and the analytic equation are even more qualitative when one 
considers the specific heat at constant volume C v. In Figs. 3 and 4 we have 
plotted C v as a function of density for various values of A T = T -  T c as 
calculated from the scaled equation and the analytic equation, respectively. 
The scaled equation implies that C~ will diverge as lAiiFl/~(~+l)-2= 
i A 7~[-0.t; in an analytic equation the specific heat must remain finite at the 
critical point [13]. The fact that the specific heat at constant volume 
diverges at the critical point has been well established experimentally [5, 
24]. The analytic equation of Hill et al. does not account for such an 
increase of Cv in the critical region. In the case of D20 we have only a few 
experimental C~ data of unknown accuracy reported by Amirkhanov et al. 

[25]; these data do indicate a sharp increase near the critical point consis- 
tent with the predicted divergence as shown in Fig. 5. 

Similar differences are obtained if our fundamental scaled equation is 
compared with the analytic equation of Keenan et al. [26] for ordinary 
steam, with the analytic equation of Jacobsen et al. [27] for ethylene, or 
with the analytic equation of Waxman and Gallagher [28] for isobutane. It 
should be noted that Waxman and Gallagher were well aware of the 
limitations of their analytic equation in the critical region and exclude from 
their surface the region around the critical point where large discrepancies 
appear [20, 28]. 

It is possible to improve the agreement between analytic equations and 
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Fig, 5. The specific heat at constant  volume of D20 in the one-phase region as a function of 
temperature at a density near the critical density. The data points are those of Amirkhanov et  

a l .  and the curves represent the values calculated from the universal scaled equation ( ) and 
from the analytic equation of Hill et  a l .  (-  - -).  
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a finite set of experimental data by adding an adequate number of 
corrections terms. This procedure was adopted by Haar  et al. [29] in 
formulating a new fundamental equation for fluid H20 adopted by the 
International Association for the Properties of Steam [30]. However, be- 
cause of qualitatively unphysical features caused by these correction terms, 
a small region around the critical point has to be excluded from the 
equation [30, 31]. 

5. DISCUSSION 

The renormalization-group theory of critical phenomena, originally 
introduced by Wilson and further developed by many researchers, does 
provide us with a new powerful method for a correct representation of the 
thermophysical properties of fluids in the critical region. Research to 
generalize the scaled fundamental equation so as to make it applicable in a 
larger range of temperatures and densities around the critical point is 
currently in progress [10, 32]. 

APPENDIX. SCALED FUNDAMENTAL EQUATION 

Reduced thermodynamic quantities: 

y_PL 
T Pc ' 

Fundamental equations: 

L g_  ocL 
T '  T Pc 

3 

j= l  

3 
fi=Afi+ 1 +A/~+filIA/.~AT+ E ~ ( A T ) J  

j= l  

Table II. Universal Critical-Region Constants 

/3 0.325 
6 4.82 
A 0.5 
b 2 1.3757 
Poo 0.586 535 
Pzo - 1.026 243 
P4o 0.612 903 
P01 0.103 25 
P21 0.160 32 
P41 - 0.169 86 
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Parametric representation: 

A~ = r~aO(1 -- 02) 

A7 ~=  r(1 - b20 2) - crB~aO(1 - 0 2 ) 

Ap = ar'~+')[  koPo(O) + raktpl(O) ] 

with pi(O)=Poi +P2i 02 +P4i 04 (i = 0, 1). The values of the constants in 
these equations are presented in Tables II and III. Explicit expressions for 
the various thermodynamic properties in terms of the constants of the 
scaled fundamental equation are given in Refs. 14 and 15. 
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